Abstract

Based on the velocity gradient model, an extended continuum model with consideration of the mean-field velocity difference is proposed in this paper. By using the linear stability theory, the linear stability criterion of the new model is gained, which proved that mean-field velocity difference has significant influence on stability of traffic flow. The KdV–Burgers equation is derived by using non-linear analysis method and the evolution of density wave near the neutral stability line is explored. Numerical simulations are carried out how mean-field velocity difference affect the stability of traffic flow, and energy consumption is also studied for this new macro model. At the same time, complicated traffic phenomena such as local cluster effects, shock waves and rarefaction waves can be reproduced in the new model by numerical simulation. Numerical results are consistent with the theoretical analysis, which indicates that the mean-field velocity difference not only suppresses traffic jam, but also depresses energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call