Abstract

In this paper we investigate the nonlinear dynamics of a cantilever elastic pipe that contains pulsatile flow. The equation of motion was derived by using Hamiltonian action function. We use Galerkin's technique to include only finite number of spatial modes in the solution. The stability chart of the time-varying system was computed in the space of the relative perturbation amplitude of the flow velocity and dimensionless forcing frequency using an efficient numerical method based on Chebyshev polynomials. In the near of some critical regions bifurcation diagrams were also computed which show secondary Hopf bifurcations and phase locking followed by chaotic motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.