Abstract

On the basis of the homogeneous flow model and Galerkin nodal approximation method, this study adopts the methodology in [Nucl. Eng. Des. 192 (1999) 31] to develop a nonlinear numerical model for a double-channel two-phase natural circulation loop. The calculated steady-state results provide a reasonable agreement against the experimental data in the high power region but overestimate in the low power region under both equal-heating and unequal-heating conditions. Nonlinear dynamics and stability boundary of the double-channel boiling natural circulation loop are also analyzed. Two unstable regions, type-I and type-II instabilities, are found in this system. Complex channel-to-channel interactions coupling with loop dynamics may occur in the double-channel natural circulation loop. For the equal-heating system, out-of-phase oscillations may prevail under the operating conditions that the gravitational pressure drops are very highly dominant, such as low subcooling and low power conditions. However, in-phase oscillations may exist in the medium to high power regions, where two-phase frictions are relatively important. For the unequal-heating system, the heating power difference between two channels may drive the system more unstable both in type-I and type-II regions. The two unequal-heating channels exhibit in-phase oscillation mode, instead of out-of-phase in the equal-heating system, at low subcooling and low power conditions. In addition, parametric effects on the stability are also evaluated in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call