Abstract

All-optical modulators with ultrahigh speed are in high demand due to the rapid development of optical interconnection and computation. However, due to weak photon–photon interaction, the advancement of all-optical modulators is consequently hampered by the large footprint and high power consumption. In this work, the enhanced sensitivity around an exceptional point (EP) from parity-time (PT) symmetry theory is initiatively introduced into a nonlinear all-optical modulator design. Further, a non-Hermitian all-optical modulator based on PT symmetry is proposed, which utilizes the large Kerr nonlinearity from indium tin oxide (ITO) in its epsilon-near-zero (ENZ) region. The whole system is expected to operate around EP, giving rise to the advantages of nanoscale integration and large modulation depth. This presented modulator with high efficiency and high-speed all-optical control can be commendably extended to the design methodology of various nanostructures and further prompt the development of all-optical signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.