Abstract

In this paper, the transonic and low-supersonic aeroelastic behavior of the generic fighter model was investigated in the time domain. The simulation of flutter flight test using forced harmonic motion of control surfaces including inertial coupling effects was conducted at the various conditions. The detailed dynamic aeroelastic responses are computed using a coupled time-marching method based on the effective computational structural dynamic and computational fluid dynamics techniques. The nonlinear aerodynamic effects due to an existing shock wave on the lifting surfaces were considered using a transonic small disturbance equation. A modal model obtained by a free vibration analysis was used for the structural model. The relations between the computed flutter boundary and the simulation results of the responses using the harmonic motions of control surfaces at various conditions were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.