Abstract

This paper puts forward a new nonlinear adaptive controller for a small-scale unmanned helicopter with unknown mass. The controller is developed under the framework of backstepping technique, with the unknown mass estimated by a novel identifier and the internal and external uncertainties approximated by radial basis function neural networks (RBFNNs). The overall closed-loop system, which consists of three parts: longitudinal–lateral subsystem, heave subsystem, and heading subsystem, is proved to be semi-globally uniformly ultimately bounded by the strict Lyapunov stability theory. Furthermore, the proposed method is more practical in actual applications with an improved online learning algorithm of the least parameters used in the RBFNNs. Finally, the effectiveness and the robustness of the proposed strategy are exhibited through two simulations compared with the classic PID method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.