Abstract

An adaptive nonlinear-state-feedback speed control scheme of a voltage-fed induction motor has been developed in which the control of torque and flux is decoupled. The inputs to the control algorithm are the reference speed, the reference flux, the measured stator currents, the measured rotor speed, the estimated rotor flux, and estimates of the rotor resistance, stator resistance, and load torque, which may vary during operation. The controller outputs are the reference stator voltages in rotor-flux rotating reference frame. An accurate knowledge of the rotor flux and machine parameters is the key factor in obtaining a high-performance and high-efficiency induction-motor drive. The rotor flux is estimated using the induction-motor rotor-circuit model. Although the estimated rotor flux is insensitive to the stator-resistance variation, it does depend on the rotor resistance. A stable model reference adaptive system (MRAS) rotor-resistance estimator insensitive to stator-resistance variation has been designed. Stable stator-resistance and load-torque MRAS estimators have also been developed. These estimators have been developed to constitute a multi-input-multi-output (MIMO) decoupled-cascade structure control system. This simplifies the design problem of the estimators for a stable operation from a MIMO design problem to a single-input-single-output (SISO) design problem. The continuous adaptive update of the machine parameters and load torque ensures accurate flux estimation and high-performance operation. Simulation and experimental results are presented to verify the stability of the induction-motor drive in various operating modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.