Abstract
Non-hyperbolic points of slow-fast systems (also known as singularly perturbed ordinary differential equations) are responsible for many interesting behavior such as relaxation oscillations, canards, mixed-mode oscillations, etc. Recently, the authors have proposed a control strategy to stabilize non-hyperbolic points of planar slow-fast systems. Such strategy is based on geometric desingularization, which is a well suited technique to analyze the dynamics of slow-fast systems near non-hyperbolic points. This technique transforms the singular perturbation problem to an equivalent regular perturbation problem. This papers treats the nonlinear adaptive stabilization problem of slow-fast systems. The novelty is that the point to be stabilized is non-hyperbolic. The controller is designed by combining geometric desingularization and Lyapunov based techniques. Through the action of the controller, we basically inject a normally hyperbolic behavior to the fast variable. Our results are exemplified on the van der Pol oscillator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.