Abstract

Non-hyperbolic points of slow-fast systems (also known as singularly perturbed ordinary differential equations) are responsible for many interesting behavior such as relaxation oscillations, canards, mixed-mode oscillations, etc. Recently, the authors have proposed a control strategy to stabilize non-hyperbolic points of planar slow-fast systems. Such strategy is based on geometric desingularization, which is a well suited technique to analyze the dynamics of slow-fast systems near non-hyperbolic points. This technique transforms the singular perturbation problem to an equivalent regular perturbation problem. This papers treats the nonlinear adaptive stabilization problem of slow-fast systems. The novelty is that the point to be stabilized is non-hyperbolic. The controller is designed by combining geometric desingularization and Lyapunov based techniques. Through the action of the controller, we basically inject a normally hyperbolic behavior to the fast variable. Our results are exemplified on the van der Pol oscillator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call