Abstract

Growing research interest in space robotic systems capable of accurately performing autonomous manipulation tasks within an acceptable execution time has led to an increased demand for lightweight materials and mechanisms. As a result, joint flexibility effects become important and represent the main limitation to achieving satisfactory trajectory-tracking performance. This paper addresses the nonlinear adaptive output feedback control problem for flexible-joint space manipulators. Composite control schemes in which decentralized simple adaptive control-based adaptation mechanisms to control the quasi-steady-state robot model are added to a linear correction term to stabilize the boundary-layer model are proposed. An almost strictly passivity-based approach is adopted to guarantee closed-loop stability of the quasi-steady-state model. Simulation results are included to highlight the performance and robustness of the proposed adaptive composite control methodologies to parametric and dynamics modeling uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.