Abstract

In this paper, a nonlinear adaptive neural network control is proposed for trajectory tracking of a model-scaled helicopter. The purpose of this research is to reduce the ultimate bounds of tracking errors resulted from small coupling forces (or small parasitic body forces) and aerodynamic uncertainties. The proposed control is designed under backstepping framework, with neural network compensators being added. Updating laws of neural networks are designed through projection algorithm, so that adaptive parameters are bounded. Derivatives of virtual controls are obtained through command filters. It is proved that, by using neural network compensators, tracking errors of the closed-loop system can be restricted within very small ultimate bounds. Superiority of the proposed nonlinear adaptive neural network control over a backstepping control is demonstrated by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.