Abstract
Underwater visible light communication (UVLC) is expected to act as an alternative candidate in next-generation underwater 5G wireless optical communications. To realize high-speed UVLC, the challenge is the absorption, scattering, and turbulence of a water medium and the nonlinear response from imperfect optoelectronic devices that can bring large attenuations and a nonlinearity penalty. Nonlinear adaptive filters are commonly used in optical communication to compensate for nonlinearity. In this paper, we compare a recursive least square (RLS)-based Volterra filter, a least mean square (LMS)-based digital polynomial filter, and an LMS-based Volterra filter in terms of performance and computational complexity in underwater visible light communication. We experimentally demonstrate 2.325 Gb/s transmission through 1.2 m of water with a commercial blue light-emitting diode. Our goal is to assist the readers in refining the motivation, structure, performance, and cost of powerful nonlinear adaptive filters in the context of future underwater visible light communication in order to tap into hitherto unexplored applications and services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.