Abstract

In the current study, we explore the sensitivity of the actuation dynamics of electromechanical systems on novel materials, e.g., Bi2Se3, which is a well-known 3D Topological Insulator (TI), and compare their response to metallic conductors, e.g., Au, that are currently used in devices. Bifurcation and phase portraits analysis in conservative systems suggest that the strong difference between the conduction states of Bi2Se3 and Au yields sufficiently weaker Casimir force to enhance stable operation. Furthermore, for nonconservative driven systems, the Melnikov function and Poincare portrait analysis probed the occurrence of chaotic behavior leading to increased risk for stiction. It was found that the presence of the TI enhanced stable operation against chaotic behavior over a significantly wider range of operation conditions in comparison to typical metallic conductors. Therefore, the use of TIs can allow sufficient surface conductance to apply electrostatic compensation of residual contact potentials and, at the same time, to yield sufficiently weak Casimir forces favoring long-term stable actuation dynamics against chaotic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.