Abstract

A model for difference frequency backscatter from trapped bubbles in sandy sediments was developed. A nonlinear volume scattering coefficient was computed via a technique similar to that of Ostrovsky and Sutin [“Nonlinear sound scattering from subsurface bubble layers,” in Natural Physical Sources of Underwater Sound, edited by B. R. Kerman (Kluwer, Dordrecht, 1993), pp. 363–373], which treats the case of bubbles surrounded by water. Biot’s poroelastic theory is incorporated to model the acoustics of the sediment. Biot fast and slow waves are included by modeling the pore fluid as a superposition of two acoustic fluids with effective densities that differ from the pore fluid’s actual density and account for its confinement within sediment pores. The principle of acoustic reciprocity is employed to develop an expression for the backscattering strength. Model behavior is consistent with expectations, based on the known behavior of bubbles in simpler fluid media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.