Abstract
The boundary value problems for linear and nonlinear degenerate elliptic differential-operator equations of a second order are studied. The principal parts of these problems possess variable coefficients and corresponding differential operators are non-self-adjoint. Several conditions for the separability, R-positivity and the fredholmness in abstract Lp-spaces are given. By using these results the existence, uniqueness and the maximal regularity of boundary value problems for nonlinear degenerate parabolic differential-operator equations are established. In applications mixed boundary value problems for degenerate diffusion systems, appearing in the atmospheric dispersion of pollutants are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.