Abstract

We have investigated femtosecond laser irradiation effects on the surface topography, structural changes and nonlinear absorption properties of CR-39. For this purpose, a CR-39 target was exposed in air to 25 fs, 800 nm Ti: sapphire laser radiation at fluences ranging from 0.25 J cm−2 to 3.6 J cm−2. The surface of irradiated CR-39 probed by an Atomic Force Microscope (AFM) exhibits the formation of several topographical structures, like bumps, explosions and nano cavities. Raman spectroscopy is performed to explore chemical and structural modification of the irradiated target. The spectroscopy reveals changes such as cross linking, bond breaking, formation of new bonds etc. in the fundamental structure of the polymer after irradiation. In order to establish a correlation between morphological and structural changes with the changes in the nonlinear absorption of the irradiated CR-39, a Z-scan technique was employed. A comparison of experimentally obtained data from Z-scan measurements with our calculations predicts the dominance of three-photon absorption in the case of pristine CR-39, whereas for irradiated targets concurrence of three- and two-photon absorption is probable. Nonlinear absorption increases with increasing laser fluences and is well correlated by surface and structural changes revealed by AFM and Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.