Abstract

ABSTRACT Textile reinforced concrete (TRC) is a promising material for strengthening of reinforced concrete beams due to the possibility of customizing both textile and matrix to achieve the targeted strain hardening under tensile load. Considering the complexity involved in material behaviour of TRC, the independent material characteristics majorly influence the response of the strengthened system. Presently, simple mathematical prediction models for TRC strengthened systems are few. The objective of this paper is to propose a simplified non-iterative approach to predict the behavior of RC beams strengthened with TRC. The material response calibrated based on experimental data of RC and TRC is used to develop the model using two material properties and ten non-dimensional parameters. The material parameters are described using Young´s modulus and first-crack strain of TRC in addition to various non-dimensional parameters that define strain hardening of TRC, tensile strength of steel, compressive strength of concrete and ultimate strain levels. The strain hardening of TRC is accurately incorporated, and the appropriate failure criteria for the strengthened system are idealized. Curvature at a particular section is calculated by using strain values. Parametric studies revealed that the material nonlinearity is adequately addressed and salient stages of the strengthened system predicted till failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call