Abstract

High-resolution imaging of the human retina has always been a challenge due to imperfect optical properties of the human cornea and lens, which limit the achievable resolution. We present a noniterative digital aberration correction (DAC) to achieve aberration-free cellular-level resolution in optical coherence tomography (OCT) images of the human retina in vivo. The system used is a line-field spectral-domain OCT system with a high tomogram rate, reaching 2.5 kHz. Such a high speed enables us to successfully apply digital aberration correction for not only imaging of human cone photoreceptors but also to obtain an aberration- and defocus-corrected 3D volume. Additionally, we apply DAC on functional OCT angiography data to improve lateral resolution and compensate for defocus. The speed necessities for the use of DAC in patient imaging are quantified by measuring the axial motion of 36 subjects. The first demonstration of DAC on OCT angiography as well as the motion analysis is important for future work dealing with DAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.