Abstract

We apply techniques of subriemannian geometry on Lie groups and of optimal synthesis on 2-D manifolds to the population transfer problem in a three-level quantum system driven by two laser pulses, of arbitrary shape and frequency. In the rotating wave approximation, we consider a nonisotropic model, i.e., a model in which the two coupling constants of the lasers are different. The aim is to induce transitions from the first to the third level, minimizing 1) the time of the transition (with bounded laser amplitudes), 2) the energy transferred by lasers to the system (with fixed final time). After reducing the problem to real variables, for the purpose 1) we develop a theory of time optimal syntheses for distributional problem on 2-D manifolds, while for the purpose 2) we use techniques of subriemannian geometry on 3-D Lie groups. The complete optimal syntheses are computed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.