Abstract

Non-isothermal peristaltic flow of Newtonian fluids in a circular tube is investigated numerically, using a commercial Computational Fluid Dynamics (CFD) software package. Simulation is performed over a range of Reynolds-number values, up to 1000. Temperature affects the flow field via fluid viscosity, which is assumed to decrease exponentially with temperature. Other fluid properties are assumed to be constant, and are similar to those of an oil. Allowing for temperature effects alters significantly the flow pattern and reduces pressure change. In the crest region, recirculation appears in non-isothermal flow at a much smaller Reynolds number Re than in isothermal flow. Influence of the Reynolds number itself is also reduced significantly, such that the flow pattern changes very little with increasing Re, in contrast to the isothermal case. Similarly, in non-isothermal flow, flow pattern is unchanged at different flow rate. This is also in contrast to the isothermal situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.