Abstract

The processes of nucleation in a CuCl solid solution in glass with a positive temperature jump from T 1 = 500°C to T 2 = 550, 600, and 650°C have been investigated using optical spectroscopy and exciton-thermal analysis. The dissolution of a part of the particles of the CuCl nanomelt formed previously at T 1 has been observed at T 2. Variations in the shape of the radius distribution curve of the CuCl particles due to the dissolution of initial nuclei have been determined from the melting kinetics of CuCl particles during linear heating of the sample. The nonisothermal nucleation of CuCl in glass under conditions of the temperature jump has been simulated numerically. The results of calculations of the variations in the radius distribution of CuCl particles are in agreement with the experiment. The calculated data on the variation in time of the critical radius r c and the concentration of CuCl monomers in glass after the temperature jump have been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.