Abstract
The influence of the heating rate of a solid solution of CuCl in glass on the size distribution of the produced CuCl nanoparticles is studied. The distribution curves of CuCl nanocrystals are determined by the method of exciton-thermal analysis. It is established that the concentration of CuCl nanoparticles increases by ten times upon slowing the sample heating process from 2 to 60 min, while the mean radius of particles decreases almost twice. The concentration of CuCl nanoparticles passes through a maximum in the process of heating the sample. The numerical simulation of the nucleation upon slow heating of a solid solution showed that the formation of the concentration maximum of the new phase clusters is determined by a rapid increase in the critical radius owing to an increase in temperature and decrease in the solution supersaturation. As a result, the formation of new phase nuclei ceases at a certain temperature, and a part of the previously formed clusters dissolves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.