Abstract

The precursor of LiNiPO4 was synthesized by solid-state reaction at low-heating temperature using LiOH·H2O and NH4NiPO4·H2O as raw materials. LiNiPO4 was obtained by calcining the precursor. Based on the advanced isoconversional procedure and the distributed activation energy model (DAEM), the activation energies calculated indicated that the thermal process involved two stages which stage II was a kinetically complex process, but stage I was single-step process. The most probable mechanism for the stage I is random nucleation and subsequent growth. DAEM and nonlinear model-fitting method were applied to study the stage II of decomposition process of the precursor. The distributions of activation energy, f(E a) and values of preexponential factor A of the stage II of the thermal decomposition of precursor were obtained on the basis of DAEM. The results of nonlinear model-fitting method showed the most probable mechanisms of the parallel reactions for stage II are chemical reaction and nucleation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call