Abstract

Evaporation of a liquid layer on a substrate is examined without the often-used isothermality assumption, i.e., temperature variations are accounted for. Qualitative estimates show that nonisothermality makes the evaporation rate depend on the conditions at which the substrate is maintained. If it is thermally insulated, evaporative cooling dramatically slows evaporation down; the evaporation rate tends to zero with time and cannot be determined by measuring the external parameters only. If, however, the substrate is maintained at a fixed temperature, the heat flux coming from below sustains evaporation at a finite rate, deducible from the fluid's characteristics, relative humidity, and the layer's depth. The qualitative predictions are quantified using the diffuse-interface model applied to a liquid evaporating into its own vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.