Abstract

We have investigated the non-isothermal formation kinetics of nanocrystals from the BaTiO3-KNbO3-SiO2 (BKSO) glass at temperatures from room temperature to 800 °C. The thermal characteristics and the structural transformations of the BKSO glass have been studied by means of a differential thermal analysis and X-ray diffraction. The crystallization of BKSO glass is found to accompany a single-step occurrence of a tetragonal Ba3TiNb4O15 nanocrystal structure. During the crystallization, a nanocrystals with a size of ∼40 nm at the initial stage grow with increasing temperature and reach a size of ∼120 nm by the time the crystallization finishes. We use the non-isothermal model of Johnson-Mehl-Avrami-Kolmogorov to characterize the kinetics of the crystallization process for the BKSO glass. The Avrami exponent of 3.5 indicates that the crystallization mechanisms is an increasing nucleation rate with diffusion-controlled growth. In the view of applications, providing information on how to control the size of nanograins systematically by simply controlling the annealing temperature of the glass state, as described in this study, should be useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.