Abstract

AbstractLithium solid polymer electrolytes (SPE) composed of polyethylene oxide (PEO) and yttrium oxide (Y2O3) nanoparticles were prepared. The influence of the Y2O3 nanoparticles on the non‐isothermal crystallization behaviors, crystal structure, and conductive properties of the SPE were investigated. The peak temperature, crystallinity, and crystallization half‐time (t1/2) of the SPE were strongly dependent on the concentration of Y2O3 and the cooling rate. The non‐isothermal crystallization data were analyzed by the modified Avrami model, which successfully described the nonisothermal crystallization process of the SPE. The Avrami exponents suggested that the Y2O3 nanoparticles significantly affected both the nucleation mechanism and crystal growth of the PEO matrix. The nucleating and crystallization activation energies (ψ and Ec) estimated with different theories indicated that the Y2O3 nanoparticles were inclined to serve as heterogeneous nucleating agents to benefit the crystallization at lower concentration whereas as physical hindrance to inhibit the crystal growth at relatively higher concentration. The maximum conductivity (σ) of 5.95 × 10−5 S cm−1 at room temperature for the SPE was obtained at the Y2O3 weight ratio of 0.10. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call