Abstract

The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al3NiCu composite fabricated by the stir casting process was examined. The Al3NiCu intermetallic was created by adding 3 wt.% nickel powder during stir casting and homogenization treatment at 500 °C for 24 h after casting. The microstructural results obtained using optical and scanning electron microscope indicate that, after non-isothermal aging treatment, the S-Al2CuMg precipitates become finer, forming a poor zone of this precipitate in the area between the dendrites. Also, adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al2CuMg precipitates in strengthening composite during non-isothermal aging. The maximum hardness, ultimate tensile strength, and toughness achieved in the 3 wt.% nickel-containing sample after non-isothermal aging at 250 °C are (121.30±4.21) HV, (221.67±8.31) MPa, and (1.67±0.08) MJ/m3, respectively. The maximum hardness and ultimate tensile strength of AA2024−Al3NiCu composite are decreased by 6% and 4%, respectively, compared to those of nickel-free AA2024 aluminum alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call