Abstract

Raspberry-like P(St-BA)/SiO2 nanoparticle latexes were prepared via miniemulsion polymerization of styrene (St) and butyl acrylate (BA) in the presence of 20 nm glycerol-modified SiO2 sol as a Pickering emulsifier and octaphenyl polyoxyethylene (CA-897) as a nonionic surfactant, using 2,2-azobis (isobutyronitrile) (AIBN) as an initiator. 2-(Methacryloyl) ethyltrimethylammonium chloride (MTC) was introduced to act as an auxiliary monomer to enhance the attraction of SiO2 sol onto latex nanoparticles (NPs) via increasing their electrostatic interaction with negative-charged SiO2 sol. The average particle sizes of the latex particles can be well controlled from 200 to 360 nm by variation of the SiO2 sol content as well as soft monomer BA component. The latex NPs displayed a good colloidal stability with excellent resistance to both strong acidic and basic environment. Furthermore, the nanosized latexes exhibited good film formability. The influence of reaction parameters, e.g., the initial silica amount and soft monomer BA content was systematically investigated on the film performances, such as hardness, abrasive resistance, water absorption, gloss. The results indicated that the increase of SiO2 sol content can contribute to the increase of the film hardness and water absorption ability, while increasing BA component is beneficial to the improvement of the film gloss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call