Abstract

Biosourced surfactants are endeavored as a green alternative to biosurfactants and petrochemical surfactants having industrial utilization. Nine glycolipids with headgroup and chain length variation were derived from renewable resources like vegetable oils, carbohydrates, and amino acids. The concentration-dependent interfacial activity, foamability, wetting power, emulsification power, and solubilization capacities of glycolipids were investigated to provide a structure-activity relationship. Later, the metal flotation and emulsification experiments were performed. In general, for metal flotation, the surfactant should contain a hydrophobic tail, hydrophilic head, and chelating function. In the present investigation, it was observed that the headgroup of a glycolipid can serve as a hydrophilic head as well as perform a chelating function. Moreover, heat energy generated from the sunlight was utilized for metal flotation. Additionally, these glycolipids are capable to form stable sunflower oil-water (W/O and O/W) emulsions. The mechanical and thermal stabilities and hydrophobic chain length dependency of the prepared emulsions at different water volume fractions are explored. Furthermore, encapsulation and release of water-soluble (riboflavin and l-ascorbic acid) and oil-soluble (curcumin and α-tocopherol) bioactives in glycolipid emulsions were monitored. Thus, glycolipids under investigation had shown the possibility for pretreatment of chromium-containing wastewaters and bioactive-loaded emulsions toward the controlled release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.