Abstract

Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R8F(EO)9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R8F(EO)9/Si equal to 0.1. R8F(EO)9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R8F part and the shell is a mixture of (EO)9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO2-philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.