Abstract

Efficient delivery of therapeutic proteins to a target site remains a challenge due to rapid clearance from the body. Here, we selected tobacco mosaic virus (TMV) as a model protein system to investigate the interactions between the protein and a nonionic block copolymer as a possible protecting agent for the protein. By varying the temperature, we were able to obtain core-shell structures based on hydrophobic interactions among PO blocks and noncovalent interactions between TMV and EO blocks. The protein-polymer interactions were characterized by dynamic light scattering and isothermal titration calorimetry. This study establishes principles for the possible design of clinically useful protein delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.