Abstract

Fuel cell DC/DC converters often have to be able to both step-up and step-down the input voltage, and provide a high efficiency in the whole range of output power. Conventional negative output buck-boost and non-inverting buck-boost converters provide both step-up and step-down characteristics. In this paper the non-inverting buck-boost with either diodes or synchronous rectifiers is investigated for fuel cell applications. Most of previous research does not consider the parasitic in the evaluation of the converters. In this study, detailed analytical expressions of the efficiencies for the system composed of fuel cell system and interfacing converter, considering the parasitics, are presented. It is concluded that the implementation with synchronous rectifiers provides the highest efficiency in the whole range of the fuel cell power, and its efficiency characteristic is more suitable for fuel cell applications than the implementation with diodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call