Abstract

ObjectivesTo noninvasively assess the diagnostic performance of diffusion-weighted imaging (DWI), bi-exponential intravoxel incoherent motion imaging (IVIM) and three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) in differentiating lower-grade gliomas (LGGs) from high-grade gliomas (HGGs), and predicting the isocitrate dehydrogenase (IDH) mutation status. Materials and methodsNinety-five patients with pathologically confirmed grade 2–4 gliomas with preoperative DWI, IVIM and 3D pCASL were enrolled in this study. The Student’s t test and Mann-Whitney U test were used to evaluate differences in parameters of DWI, IVIM and 3D pCASL between LGG and HGG as well as between mutant and wild-type IDH in grade 2 and 3 diffusion astrocytoma; receiver operator characteristic (ROC) analysis was used to assess the diagnostic performance. ResultsThe value of ADCmean, ADCmin, Dmean and Dmin in HGGs were lower than in LGGs, while the value of CBFmean and CBFmax in HGGs were higher than in LGGs. In ROC analysis, the AUC values of Dmean, Dmin and CBFmax were 0.827, 0.878 and 0.839, respectively. The combination of CBFmax and Dmin displayed the highest diagnostic performance to distinguish LGGs from HGGs, with AUC 0.906, sensitivity 82.4 %, and specificity 86.4 %. In grades 2 and 3 diffusion astrocytoma patients, ADCmin, Dmean, Dmin, CBFmean and CBFmax showed significant differences between IDHmut and IDHwt group (p < 0.05, 0.001, 0.001, 0.01 and 0.001, respectively) and the AUC values were 0. 709, 0.849, 0.919, 0.755 and 0.873, respectively. Similarly, the combination of CBFmax and Dmin demonstrated the highest AUC value (0.938) in prediction IDH mutation status, with sensitivity 92.9 %, and specificity 95.5 %. ConclusionThe combination of IVIM and 3D pCASL can be used in prediction histologic grade and IDH mutation status of glioma noninvasively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call