Abstract

Background/ObjectivesInflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) with contrast enhanced ultrasound (CEU) could assess treatment effects on endothelial phenotype in early atherosclerosis.MethodsMice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day). At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MBVCAM) and control microbubbles (MBCtr). Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression.ResultsPlaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MBVCAM in non-treated animals (MBVCAM 2±0.3 vs MBCtr 0.7±0.2, p<0.01), but not in statin-treated animals (MBVCAM 0.8±0.2 vs MBCtr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MBVCAM signal).ConclusionsNon-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

Highlights

  • Large primary and secondary prevention trials have consistently shown a risk reduction for cardiovascular events when patients with established vascular disease, diabetes or hyperlipidemia are treated with statins [1,2,3]

  • Statin treatment resulted in a significant reduction in plaque burden in the sinuses of valsalva

  • The results from our study indicate that ultrasound molecular imaging can detect the impact of therapies aimed at reducing endothelial inflammation during early disease stages in a murine model of atherosclerosis when high frequency morphologic plaque imaging is unable to detect a treatment effect

Read more

Summary

Introduction

Large primary and secondary prevention trials have consistently shown a risk reduction for cardiovascular events when patients with established vascular disease, diabetes or hyperlipidemia are treated with statins [1,2,3]. Statin treatment confers a risk reduction for cardiovascular events of 40% at best [5], leaving the majority of events to occur despite treatment. This residual risk may be attributable to incomplete reduction in inflammatory status despite reaching LDL-goals. Improved strategies for atherosclerosis treatment will likely include better risk assessment tools that allow for risk stratification and treatment during the early stages of atherosclerosis, and additional pharmacologic interventions that target inflammation. For pharmacologic interventions that are started at early timepoints during the pathogenesis of atherosclerosis, or that include novel, costly drug regimens with the goal of reducing vascular inflammation, the ability to non-invasively assess treatment effect on vascular inflammatory status will be important

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call