Abstract

We propose a new method for imaging activation time within three-dimensional (3D) myocardium by means of a heart-excitation model. The activation time is estimated from body surface electrocardiograms by minimizing multiple objective functions of the measured body surface potential maps (BSPMs) and the heart-model-generated BSPMs. Computer simulation studies have been conducted to evaluate the proposed 3D myocardial activation time imaging approach. Single-site pacing at 24 sites throughout the ventricles, as well as dual-site pacing at 12 pairs of sites in the vicinity of atrio-ventricular ring, was performed. The present simulation results show that the average correlation coefficient (CC) and relative error (RE) for single-site pacing were 0.9992 ± 0.0008/0.9989 ± 0.0008 and 0.05 ± 0.02/0.07 ± 0.03, respectively, when 5 µV/10 µV Gaussian white noise (GWN) was added to the body surface potentials. The average CC and RE for dual-site pacing were 0.9975 ± 0.0037 and 0.08 ± 0.04, respectively, when 10 µV GWN was added to the body surface potentials. The present simulation results suggest the feasibility of noninvasive estimation of activation time throughout the ventricles from body surface potential measurement, and suggest that the proposed method may become an important alternative in imaging cardiac electrical activity noninvasively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.