Abstract

ABSTRACT Background The discovery of circulating cell-free fetal DNA (cff-DNA) in maternal plasma has inspired the noninvasive prenatal testing (NIPT) approaches for various genetic fetal screening including rhesus D typing, sex determination, aneuploidies, and single-gene disorders. Objective Noninvasive determination of paternally inherited beta-thalassemia mutations in maternal total cell-free DNA (cf-DNA) by using allele-specific amplification refractory mutation system (ARMS) real-time PCR (RT-PCR) in concordance with the conventional invasive method. Methods An observational study was conducted at the Armed Forces Institute of Blood Transfusion in collaboration with the genetics resource center from March 2021 to August 2021. A total number of 26 couples were selected having a history of previously affected children with beta-thalassemia. A routine chorionic villus sampling (CVS) invasive procedure was carried out, and the mutation analysis was done using conventional PCR. To assess NIPT, a total cf-DNA was also extracted from maternal plasma and analyzed using allele-specific ARMS RT-PCR. Results Based on conventional PCR testing, 13 of 26 couples were found having beta-thalassemia carriers with homozygous mutation, and 13 couples were carriers with heterozygous mutations. Further to assess NIPT, the cf-DNA of 13 pregnant females among the couples with different mutational patterns was analyzed by allele-specific ARMS RT-PCR to detect paternally inherited mutations. In comparison with conventional PCR, 11 cases (84.6%) were matched successfully, while two cases (15.4%) had no concordance with conventional invasive prenatal testing (IPT). Conclusion NIPT using maternal cf-DNA by allele-specific ARMS RT-PCR can be feasible to screen paternal inherited mutant alleles to rule out pregnant women from invasive procedures where the test would be negative for paternal inheritance. However, a low amount of fetal DNA in maternal plasma is a limiting factor and required further improvement to enrich fetal cf-DNA for complete concordance with conventional IPT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call