Abstract

The goals of our study were to develop a noninvasive prenatal test for autosomal recessive monogenic conditions and to prove its overall feasibility and potential for clinical integration. We recruited a pregnant woman and her spouse, who had a proband child suffering from congenital deafness, and obtained the target-region sequencing data from a semicustom array that used genomic and maternal plasma DNA from three generations of this family. A haplotype-assisted strategy was developed to detect whether the fetus inherited the pathogenic mutations in the causative gene, GJB2. The parental haplotype was constructed using a trio strategy through two different processes, namely, the grandparent-assisted haplotype phasing process and the proband-assisted haplotype phasing process. The fetal haplotype was deduced afterward based on both the maternal plasma sequencing data and the parental haplotype. The accuracy levels of paternal and maternal haplotypes obtained by grandparent-assisted haplotype phasing were 99.01 and 97.36%, respectively, and the proband-assisted haplotype phasing process yielded slightly lower accuracies of 98.73 and 96.79%, respectively. Fetal inheritance of the pathogenic gene was deduced correctly in both processes. Our study indicates that the strategy of haplotype-based noninvasive prenatal testing for monogenic conditions has potential applications in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.