Abstract
To investigate the ability of ultrasomics to predict Ki-67 expression in hepatocellular carcinoma (HCC). A total of 244 patients from three hospitals were retrospectively recruited (training dataset, n=168; test dataset, n=43; and validation dataset, n=33). Lesion segmentation of the ultrasound images was performed manually by two radiologists. In total, 1409 ultrasomics features were extracted. Feature selection was conducted using the intra-class correlation coefficient, variance threshold, mutual information, and recursive feature elimination plus eXtreme Gradient Boosting. The support vector machine was combined with the learning curve and grid search parameter tuning to construct the clinical, ultrasomics, and combined models. The predictive performance of the models was assessed using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity and accuracy. The ultrasomics model performed well on the training, test, and validation datasets. The AUC (95% confidence interval [CI]) for these datasets were 0.955 (0.912-0.981), 0.861 (0.721-0.947), and 0.665 (0.480-0.819), respectively. The combination of ultrasomics and clinical features significantly improved model performance on all three datasets. The AUC (95% CI), sensitivity, specificity, and accuracy were 0.986 (0.955-0.998), 0.973, 0.840, and 0.869 on the training dataset; 0.871 (0.734-0.954), 0.750, 0.829, and 0.814 on the test dataset; and 0.742 (0.560-0.878), 0.714, 0.808, and 0.788 on the validation dataset, respectively. Ultrasomics was proved to be a potential noninvasive method to predict Ki-67 expression in HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.