Abstract
Tc-99m- and I-131-labeled arginine-arginine-leucine (RRL) peptides have shown the feasibility of tumor imaging in our previous studies. However, there have been no reports using RRL peptide for positron emission tomography (PET) imaging. In this study, RRL was radiolabeled with Ga-68 under optimized reaction conditions to develop a better specific and effective tumor imaging agent. RRL was synthesized and conjugated to a bifunctional chelating agent (DOTA-NHS), then radiolabeled with Ga-68. Labeling yield was optimized by varying pH, temperature, and reaction time and the stability was evaluated in human fresh serum. Cellular uptakes of [68Ga]DOTA-RRL and FITC-conjugated RRL in HepG2 cells were evaluated using a gamma counter, confocal microscopy, and flow cytometry. PET images and biodistribution were performed in HepG2 tumor-bearing mice after injection of [68Ga]DOTA-RRL or [68Ga]GaCl3 at different time points. Further, blocking study was investigated using cold RRL. The labeling yield of [68Ga]DOTA-RRL was 80.6 ± 3.9% with a pH of 3.5-4.5 at 100°C for 15min. The cellular uptake of [68Ga]DOTA-RRL in HepG2 cells was significantly higher than that of [68Ga]GaCl3 (P < 0.05). Moreover, the high fluorescent affinity of FITC-conjugated RRL in HepG2 cells was shown using confocal microscopy and flow cytometry. After injection of [68Ga]DOTA-RRL in HepG2 tumor-bearing mice, tumor regions exhibited high radioactive accumulation over 120min and the highest uptake at 30min. After blocked with cold RRL, HepG2 tumors could not be visualized. [68Ga]GaCl3 was unable to show tumor images at any time point. The biodistribution results confirmed the PET imaging and blocking results. Our study successfully prepared [68Ga]DOTA-RRL with a high labeling yield under the optimized reaction conditions and demonstrated its potential role as a PET imaging agent for tumor-targeted diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.