Abstract

With the causes of perinatal brain injuries still unclear and the probable role of hemodynamic instability in their etiology, bedside monitoring of neonatal cerebral hemodynamics with standard values as a function of age are needed. In this study, we combined quantitative frequency domain near infrared spectroscopy (FD-NIRS) measures of cerebral tissue oxygenation (StO(2)) and cerebral blood volume (CBV) with diffusion correlation spectroscopy (DCS) measures of a cerebral blood flow index (CBF(ix)) to test the validity of the CBV-CBF relationship in premature neonates and to estimate cerebral metabolic rate of oxygen (rCMRO(2)) with or without the CBF(ix) measurement. We measured 11 premature neonates (28-34 weeks gestational age) without known neurological issues, once a week from one to six weeks of age. In nine patients, cerebral blood velocities from the middle cerebral artery were collected by transcranial Doppler (TCD) and compared with DCS values. Results show a steady decrease in StO(2) during the first six weeks of life while CBV remains stable, and a steady increase in CBF(ix). rCMRO(2) estimated from FD-NIRS remains constant but shows wide interindividual variability. rCMRO(2) calculated from FD-NIRS and DCS combined increased by 40% during the first six weeks of life with reduced interindividual variability. TCD and DCS values are positively correlated. In conclusion, FD-NIRS combined with DCS offers a safe and quantitative bedside method to assess CBV, StO(2), CBF, and rCMRO(2) in the premature brain, facilitating individual follow-up and comparison among patients. A stable CBV-CBF relationship may not be valid for premature neonates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.