Abstract

GLP-1R imaging with radiolabelled exendin has proven to be a powerful tool to quantify beta-cell mass (BCM) <i>in vivo</i>. As GLP-1R expression is thought to be influenced by glycemic control, we examined the effect of blood glucose levels on GLP-1R-mediated exendin uptake in both murine and human islets and its implications for BCM quantification. Periods of hyperglycemia significantly reduced exendin uptake in murine and human islets, which was paralleled by a reduction in GLP-1R expression. Detailed mapping of the tracer uptake and insulin and GLP-1R expression conclusively demonstrated that the observed reduction in tracer uptake directly correlates to GLP-1R expression levels. Importantly, the linear correlation between tracer uptake and beta-cell area was maintained in spite of the reduced GLP-1R expression levels. Subsequent normalization of blood glucose levels restored absolute tracer uptake and GLP-1R expression in beta-cells and the observed loss in islet volume was halted. <p>This manuscript emphasizes the potency of nuclear imaging techniques to monitor receptor regulation non-invasively. Our findings have significant implications for clinical practice, indicating that blood glucose levels should be near-normalized for at least three weeks prior to GLP-1R agonist treatment or quantitative radiolabeled exendin imaging for BCM analysis.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.