Abstract
To compare quantitative magnetic resonance (QMR), dual-energy x-ray absorptiometry (DXA), and deuterium oxide (D2O) dilution methods for measurement of total body water (TBW), lean body mass (LBM), and fat mass (FM) in healthy cats and to assess QMR precision and accuracy. Domestic shorthair cats (58 and 32 cats for trials 1 and 2, respectively). QMR scans of awake cats performed with 2 units were followed by administration of D2O tracer (100 mg/kg, PO). Cats then were anesthetized, which was followed by QMR and DXA scans. Jugular blood samples were collected before and 120 minutes after D2O administration. QMR precision was similar between units (coefficient of variation < 2.9% for all measures). Fat mass, LBM, and TBW were similar for awake or sedated cats and differed by 4.0%, 3.4%, and 3.9%, respectively, depending on the unit. The QMR minimally underestimated TBW (1.4%) and LBM (4.4%) but significantly underestimated FM (29%), whereas DXA significantly underestimated LBM (9.2%) and quantitatively underestimated FM (9.3%). A significant relationship with D2O measurement was detected for all QMR (r(2) > 0.84) and DXA (r(2) > 0.84) measurements. QMR was useful for determining body composition in cats; precision was improved over DXA. Quantitative magnetic resonance can be used to safely and rapidly acquire data without the need for anesthesia, facilitating frequent monitoring of weight changes in geriatric, extremely young, or ill pets. Compared with the D2O dilution method, QMR correction equations provided accurate data over a range of body compositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.