Abstract

The aim of this study is to clarify biophysics of normal pressure hydrocephalus (NPH) based on non-invasive intracranial compliance measurement using magnetic resonance imaging (MRI). Patients with NPH after subarachnoid hemorrhage (NPH group, n = 5), brain atrophy or asymptomatic ventricular dilation (VD group, n = 5), and healthy volunteers (control group, n = 12) were included in this study. Net blood flow (bilateral internal carotid and vertebral arteries, and jugular veins) and cerebrospinal fluid (CSF) flow in subarachnoid space at the C2 level of cervical vertebra were measured using phase-contrast cine MRI. CSF pressure gradient and intracranial volume changes during a cardiac cycle were calculated based on Alperin's method. Compliance index (Ci = delta V/delta P) was obtained from the maximum pressure gradient and volume changes. Pressure volume response (PVR) was measured in the NPH group during a shunt operation. Ci in the NPH group was the lowest among the three studies groups. No difference was found between the control and VD groups. There was a linear correlation between Ci and PVR. In conclusion, intracranial compliance can be determined by cine MRI non-invasively. It is well known that NPH has relatively low intracranial compliance, this non-invasive method can be used for the diagnosis of NPH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call