Abstract
An optical spectroscopic method is investigated theoretically for in vivo measurement of blood glucose concentration. This method is based on dynamic dual wavelength (610 nm and 810 nm) time-resolved measurements under a condition of artificial blood flow kinetics in a human finger. The influence of glucose concentration on absorption and reduced scattering coefficients of the whole blood is simulated using the T-matrix method. The scattering centers, RBC aggregation, under the artificial — kinetics condition are modeled as spheroid. The modified parametric slopes were derived from the Laplace transformed data of the time-resolved transmittance. The results show that an appropriate selection of the Laplace parameter can lead to enhanced sensitivity for glucose measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.