Abstract

Chitosan-based polymeric micelles are promising non-viral nanocarriers for safe and targeted gene delivery. Multi-functionalized chitosan polymeric micelles were prepared by grafting fatty acid, cell-penetrating peptide, and mannose on the chitosan backbone. The polymeric micelles were subjected to surface morphology and surface topography using scanning electron microscopy and atomic force microscopy, respectively. The hemotoxic profile of the prepared polymeric micelles was established against erythrocytes and was found to be <5% hemotoxic up to the concentration of 600 µg/mL. In vitro ApoE2 expression in primary astrocytes and neurons was analyzed. Multi-functionalized polymeric micelles produced greater (p < 0.05) transfection in astrocytes and neurons in comparison to mono-functionalized micelles. Intranasal administration of polymeric micelles/pApoE2 polyplex led to significantly higher (p < 0.05) in vivo pApoE2 expression than chitosan and unfunctionalized polymeric micelles-treated mice groups. The outcomes of this study predict that the developed multi-functionalized polymeric micelles could be an effective and safe gene delivery platform to the brain through the intranasal route.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.