Abstract
BackgroundHigh-intensity focused electromagnetic (HIFEM) field technology has been reported to increase muscle thickness and hypertrophy. However, this process has not yet been confirmed on a histologic level.ObjectivesThe aim of this study was to evaluate in-vivo structural changes in striated porcine muscle tissue following HIFEM treatment.MethodsThree Yorkshire pigs received four 30-minute HIFEM treatments applied to the biceps femoris muscle on 1 side only. The fourth pig served as a control subject. At baseline and 2 weeks after the last treatment, biopsy specimens of the muscle tissue were collected from the treatment site. The control pig underwent muscle biopsy from a similar but untreated site. Twenty-five histology slides were evaluated from each pig. A certified histopathologist analyzed sliced biopsy samples for structural changes in the tissue.ResultsHistologic analysis showed hypertrophic changes 2 weeks posttreatment. The muscle mass density increased by 20.56% (to a mean of 17,053.4 [5617.9] µm2) compared with baseline. Similarly, muscle fiber density (hyperplasia) increased: the average change in the number of fibers in a slice area of 136,533.3 µm2 was +8.0%. The mean size of an individual muscle fiber increased by 12.15% (to 332.23 [280.2] µm2) 2 weeks posttreatment. Control samples did not show any significant change in fiber density or hyperplasia.ConclusionsHistopathologic quantification showed significant structural muscle changes through a combination of fiber hypertrophy and hyperplasia. Control biopsies showed a lack of similar changes. The data correlate with findings of other HIFEM research and suggest that HIFEM could be used for noninvasive induction of muscle growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.