Abstract

We imaged neuronal differentiation in vivo using dual reporters (sodium iodide symporter [NIS] and luciferase) coupled to a neuron-specific enolase (NSE) promoter. PC12 (NSE positive) and F11 cells were transfected with a bicistronic (NIS and luciferase; pNSE-NF) or a luciferase (pNSE-Fluc) reporter coupled to the NSE promoter. Weak NSE promoter activity was overcome by a two-step transcriptional amplification (TSTA) system (pNSE-TSTA-Fluc). In vivo, NIS and luciferase expression were examined using a (99m)Tc-pertechnetate gamma camera and bioluminescence imaging, respectively. pNSE-NF-transfected PC12 cells showed 3-fold higher radioiodine uptakes and >100-fold higher luciferase activity than parental cells. NIS or luciferase activity was not detected in pNSE-NF-transfected HeLa cells. When F11 cells were differentiated into neurons by db-cAMP, NIS and luciferase activities increased 4-fold compared to those without treatment, which was confirmed by Western blot and RT-PCR of NSE. In vivo in pNSE-NF-transfected F11 cells, db-cAMP treatment increased the luciferase activity but not the scintigraphic activity. In vitro, pNSE-TSTA-Fluc produced 130-fold higher luciferase activity than pNSE-Fluc and neuronal differentiation showed 4-fold higher activity from both pNSE-TSTA-Fluc and pNSE-Fluc than before differentiation. In vivo, in pNSE-TSTA-Fluc-transfected F11 cells, luciferase activity increased after neuronal differentiation. In vivo luciferase activity persisted up to 2 days after db-cAMP-induced neuronal differentiation. NSE promoter-driven dual reporter transgenes revealed the possibility of in vivo imaging of neuronal differentiation, which was further enabled by high amplification using a TSTA system. We propose that this strategy be used to follow the transplanted stem cells during differentiation in live animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call