Abstract

AimThis study evaluates the feasibility of handheld vital microscopy for noninvasive, objective assessment of the microcirculation of the human uterine cervix. We qualitatively and quantitatively describe the microcirculation in healthy subjects in order to provide a basis for its application in cervical pathology. MethodsIncident dark field imaging was used to image the microcirculation in four quadrants of the uterine ectocervix in ten healthy participants. If the squamocolumnar junction was visible, measurements were repeated on the endocervical columnar epithelium as well. Image acquisition time was recorded and participants scored the experienced level of discomfort. Angioarchitecture was classified according to Weber's classification. Quantitative parameters included capillary density (CD), total and perfused vessel density (TVD, PVD), proportion of perfused vessels (PPV) and microvascular flow index (MFI). ResultsImage acquisition was easy, fast and well tolerated. Angioarchitecture was characterized by two distinctive and organized patterns; capillary loops underneath the squamous epithelium of the ectocervix and vascular networks underneath the columnar epithelium. In the image sequences containing capillary loops, mean CD was 33.2 cpll/mm2 (95% CI 28.2–38.2 cpll/mm2). In the image sequences with vascular networks, mean TVD was 12.5 mm/mm2 (95% CI 11.2–13.77 mm/mm2), mean PVD was 12.2 (95% CI 11.0–13.5 mm/mm2), MFI was 3 and PPV was 100%. ConclusionsIncident dark field imaging allows for noninvasive, real time visualization and objective evaluation and quantification of the microcirculation of the uterine cervix. The organized vascular patterns and optimal perfusion observed in healthy subjects allow for comparison with cervical pathology, for example in patients with cervical dysplasia or cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.