Abstract

Promoters that limit transgene expression to tumors play a vital role in cancer gene therapy. Although tumor specific, the human Survivin promoter (pSurv) elicits low levels of transcription. A bidirectional two-step transcriptional amplification (TSTA) system was designed to enhance expression of the therapeutic gene (TG) tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL or TR) and the reporter gene firefly luciferase (FL) from pSurv. An adenoviral vector carrying the enhanced targeting apparatus (Ad-pSurv-TR-G8-FL) was tested for efficiency and specificity of gene expression in cells and in living animals. Compared to the one-step systems (Ad-pSurv-FL or Ad-pSurv-TR), the bidirectional TSTA system showed tenfold higher expression of both the therapeutic and the reporter gene and their expression correlated in cells (R(2) = 0.99) and in animals (R(2) = 0.67). Noninvasive quantitative monitoring of magnitude and time variation of TRAIL gene expression was feasible by bioluminescence imaging of the transcriptionally linked FL gene in xenograft tumors following intratumoral adenoviral injection. Moreover, the TSTA adenovirus maintained promoter specificity in nontarget tissues following tail vein administration. These studies demonstrate the potential of the bidirectional TSTA system to achieve high levels of gene expression from a weak promoter, while preserving specificity and the ability to image expression of the TG noninvasively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.