Abstract
We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C-D stretching vibrational bands in these amino acids are observed in the 2100-2300 cm(-1) spectral region that is devoid of vibrational contributions from other, nondeuterated intracellular constituents. We found that incubation with deuterated amino acids for 8 h in cell culture already led to clearly detectable isotope-related signals in Raman spectra of HeLa cells. As expected, the level of isotope incorporation into proteins increased with incubation time, reaching 55% for deuterated phenylalanine after 28 h. Raman spectral imaging of HeLa cells incubated with deuterium-labeled amino acids showed similar spatial distributions for both isotope-labeled and unlabeled proteins, as evidenced by Raman ratio imaging. The SILAC-Raman methodology presented here combines the strengths of stable isotopic labeling of cells with the nondestructive and quantitative nature of Raman chemical imaging and is likely to become a powerful tool in both cell biology applications and research on tissues or whole organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.