Abstract

We have previously shown that microbubbles adhere to leukocytes in regions of inflammation. We hypothesized that these microbubbles are phagocytosed by neutrophils and monocytes and remain acoustically active, permitting their detection in inflamed tissue. In vitro studies were performed in which activated leukocytes were incubated with albumin or lipid microbubbles and observed under microscopy. Microbubbles attached to the surface of activated neutrophils and monocytes, were phagocytosed, and remained intact for up to 30 minutes. The rate of destruction of the phagocytosed microbubbles on exposure to ultrasound was less (P</=0.05) than that of free microbubbles at all acoustic pressures applied. Intravital microscopy and simultaneous ultrasound imaging of the cremaster muscle was performed in 6 mice to determine whether phagocytosed microbubbles could be detected in vivo. Fifteen minutes after intravenous injection of fluorescein-labeled microbubbles, when the blood-pool concentration was negligible, the number of phagocytosed/attached microbubbles within venules was 7-fold greater in tumor necrosis factor-alpha (TNF-alpha)-treated animals than in control animals (P<0.01). This increase in retained microbubbles resulted in a 5- to 6-fold-greater (P<0.01) degree of ultrasound contrast enhancement than in controls. After attaching to activated neutrophils and monocytes, microbubbles are phagocytosed intact. Despite viscoelastic damping, phagocytosed microbubbles remain responsive to ultrasound and can be detected by ultrasound in vivo after clearance of freely circulating microbubbles from the blood pool. Thus, contrast ultrasound has potential for imaging sites of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.